815 research outputs found

    Eye guidance during real-world scene search:The role color plays in central and peripheral vision

    Get PDF
    The visual system utilizes environmental features to direct gaze efficiently when locating objects. While previous research has isolated various features' contributions to gaze guidance, these studies generally used sparse displays and did not investigate how features facilitated search as a function of their location on the visual field. The current study investigated how features across the visual field-particularly color-facilitate gaze guidance during real-world search. A gaze-contingent window followed participants' eye movements, restricting color information to specified regions. Scene images were presented in full color, with color in the periphery and gray in central vision or gray in the periphery and color in central vision, or in grayscale. Color conditions were crossed with a search cue manipulation, with the target cued either with a word label or an exact picture. Search times increased as color information in the scene decreased. A gaze-data based decomposition of search time revealed color-mediated effects on specific subprocesses of search. Color in peripheral vision facilitated target localization, whereas color in central vision facilitated target verification. Picture cues facilitated search, with the effects of cue specificity and scene color combining additively. When available, the visual system utilizes the environment's color information to facilitate different real-world visual search behaviors based on the location within the visual field

    Transcranial magnetic stimulation to the occipital place area biases gaze during scene viewing

    Get PDF
    We can understand viewed scenes and extract task-relevant information within a few hundred milliseconds. This process is generally supported by three cortical regions that show selectivity for scene images: parahippocampal place area (PPA), medial place area (MPA) and occipital place area (OPA). Prior studies have focused on the visual information each region is responsive to, usually within the context of recognition or navigation. Here, we move beyond these tasks to investigate gaze allocation during scene viewing. Eye movements rely on a scene’s visual representation to direct saccades, and thus foveal vision. In particular, we focus on the contribution of OPA, which is i) located in occipito-parietal cortex, likely feeding information into parts of the dorsal pathway critical for eye movements, and ii) contains strong retinotopic representations of the contralateral visual field. Participants viewed scene images for 1034 ms while their eye movements were recorded. On half of the trials, a 500 ms train of five transcranial magnetic stimulation (TMS) pulses was applied to the participant’s cortex, starting at scene onset. TMS was applied to the right hemisphere over either OPA or the occipital face area (OFA), which also exhibits a contralateral visual field bias but shows selectivity for face stimuli. Participants generally made an overall left-to-right, top-to-bottom pattern of eye movements across all conditions. When TMS was applied to OPA, there was an increased saccade latency for eye movements toward the contralateral relative to the ipsilateral visual field after the final TMS pulse (400ms). Additionally, TMS to the OPA biased fixation positions away from the contralateral side of the scene compared to the control condition, while the OFA group showed no such effect. There was no effect on horizontal saccade amplitudes. These combined results suggest that OPA might serve to represent local scene information that can then be utilized by visuomotor control networks to guide gaze allocation in natural scenes

    Intrusive effects of semantic information on visual selective attention

    Get PDF
    Every object contains semantic information in extension to its low-level properties. It is well documented that such information biases attention when it is necessary for an ongoing task. However, whether semantic relationships influence attentional selection when they are irrelevant to the ongoing task remains an open question. The ubiquitous nature of semantic information suggests that it could bias attention even when these properties are irrelevant. In the present study, three objects appeared on screen, two of which were semantically related. After a varying time interval, a target or distractor appeared on top of each object. The objects’ semantic relationships never predicted target location. Despite this, a semantic bias on attentional allocation was observed with an initial, transient bias to semantically related objects. Further experiments demonstrated that this effect was contingent on the objects being attended: if an object never contained the target, it no longer exerted a semantic influence. In a final set of experiments, we demonstrate that semantic bias is robust and appears even in the presence of more predictive cues (spatial probability). The results suggest that as long as an object is attended, its semantic properties bias attention, even if it is irrelevant to an ongoing task and there are more predictive factors available

    Intrusive effects of task-irrelevant information on visual selective attention: semantics and size

    Get PDF
    Attentional selection is a mechanism by which incoming sensory information is prioritized for further, detailed and more effective, processing. Given that attended information is privileged by the sensory system, understanding and predicting what information is granted prioritization becomes an important endeavor. It has been argued that salient events as well as information that is related to the current goal of the organism (i.e., task-relevant) receive such priority. Here, we propose that attentional prioritization is not limited to task-relevance, and discuss evidence showing that task-irrelevant, non-salient, high-level properties of unattended objects, namely object meaning and size, influence attentional allocation. Such intrusion of non-salient task-irrelevant high-level information points to the need to re-conceptualize and formally modify current models of attentional guidance

    Making sense of real-world scenes

    Get PDF
    To interact with the world, we have to make sense of the continuous sensory input conveying information about our environment. A recent surge of studies has investigated the processes enabling scene understanding, using increasingly complex stimuli and sophisticated analyses to highlight the visual features and brain regions involved. However, there are two major challenges to producing a comprehensive framework for scene understanding. First, scene perception is highly dynamic, subserving multiple behavioral goals. Second, a multitude of different visual properties co-occur across scenes and may be correlated or independent. We synthesize the recent literature and argue that for a complete view of scene understanding, it is necessary to account for both differing observer goals and the contribution of diverse scene properties

    The Ursinus Weekly, December 31, 1928

    Get PDF
    Ursinus debating league holds ninth conference • Debating very practical; a ladder to success • Some objections answered with a desire to help • The best ways to refute an opponents arguments • A baker\u27s dozen of helps for the young debater • How to fit debating into high school curriculum • How to get out audiences for our league debates • Report for last season: eleven trophies given • Importance of delivery in high school debatinghttps://digitalcommons.ursinus.edu/weekly/2170/thumbnail.jp

    Task-irrelevant semantic properties of objects impinge on sensory representations within the early visual cortex

    Get PDF
    Objects can be described in terms of low-level (e.g., boundaries) and high-level properties (e.g., object semantics). While recent behavioral findings suggest that the influence of semantic relatedness between objects on attentional allocation can be independent of task-relevance, the underlying neural substrate of semantic influences on attention remains ill-defined. Here, we employ behavioral and functional magnetic resonance imaging (fMRI) measures to uncover the mechanism by which semantic information increases visual processing efficiency. We demonstrate that the strength of the semantic relatedness signal decoded from the left inferior frontal gyrus (IFG): (i) influences attention, producing behavioral semantic benefits; (ii) biases spatial attention maps in the intraparietal sulcus (IPS), subsequently modulating early visual cortex (EVC) activity; (iii) directly predicts the magnitude of behavioral semantic benefit. Together, these results identify a specific mechanism driving task-independent semantic influences on attention

    Auxin fluxes through plasmodesmata modify root-tip auxin distribution

    Get PDF
    © 2020. Published by The Company of Biologists Ltd. Auxin is a key signal regulating plant growth and development. It is well established that auxin dynamics depend on the spatial distribution of efflux and influx carriers on the cell membranes. In this study, we employ a systems approach to characterise an alternative symplastic pathway for auxin mobilisation via plasmodesmata, which function as intercellular pores linking the cytoplasm of adjacent cells. To investigate the role of plasmodesmata in auxin patterning, we developed a multicellular model of the Arabidopsis root tip. We tested the model predictions using the DII-VENUS auxin response reporter, comparing the predicted and observed DII-VENUS distributions using genetic and chemical perturbations designed to affect both carrier-mediated and plasmodesmatal auxin fluxes. The model revealed that carrier-mediated transport alone cannot explain the experimentally determined auxin distribution in the root tip. In contrast, a composite model that incorporates both carrier-mediated and plasmodesmatal auxin fluxes re-capitulates the root-tip auxin distribution. We found that auxin fluxes through plasmodesmata enable auxin reflux and increase total root-tip auxin. We conclude that auxin fluxes through plasmodesmata modify the auxin distribution created by efflux and influx carriers

    Exome-wide association study of pancreatic cancer risk

    Get PDF
    We conducted a case-control exome-wide association study to discover germline variants in coding regions that affect risk for pancreatic cancer, combining data from 5 studies. We analyzed exome and genome sequencing data from 437 patients with pancreatic cancer (cases) and 1922 individuals not known to have cancer (controls). In the primary analysis, BRCA2 had the strongest enrichment for rare inactivating variants (17/437 cases vs 3/1922 controls) (P=3.27x10(-6); exome-wide statistical significance threshold P<2.5x10(-6)). Cases had more rare inactivating variants in DNA repair genes than controls, even after excluding 13 genes known to predispose to pancreatic cancer (adjusted odds ratio, 1.35, P=.045). At the suggestive threshold (P<.001), 6 genes were enriched for rare damaging variants (UHMK1, AP1G2, DNTA, CHST6, FGFR3, and EPHA1) and 7 genes had associations with pancreatic cancer risk, based on the sequence-kernel association test. We confirmed variants in BRCA2 as the most common high-penetrant genetic factor associated with pancreatic cancer and we also identified candidate pancreatic cancer genes. Large collaborations and novel approaches are needed to overcome the genetic heterogeneity of pancreatic cancer predisposition
    • …
    corecore